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The Lieb-Mattis theorem is generalized to an antiferromagnetic spin-ladder model with four-spin cyclic
exchange interaction. We prove that for J�2 K, the antiferromagnetic ordering of energy levels takes place
separately in two sectors, which remain symmetric and antisymmetric under the reflection with respect to the
longitudinal axis of the ladder. We prove also that at the self-dual point J=2 K, the Lieb-Mattis rule holds in
the sectors with fixed number of rung singlets. In both cases, it agrees with the similar rule for Haldane chain
with appropriate spin number.
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The systems with multi-spin exchanges have gained a lot
of interest for a long time �for a recent review, see Refs. 1
and 2�. These interactions arise at higher orders of a strong
coupling expansion of a half-filled Hubbard model and pro-
vide perturbative corrections to the Heisenberg model.3 The
multi-spin cyclic permutations first were suggested to be im-
portant in two-dimensional �2D� quantum solids like 3He.4

The relevance of the four-spin cyclic interaction around
square plaquettes of CuO2 planes in high-temperature super-
conductors was suggested in Ref. 5, and then it was proven
experimentally.1 Recently, their quasi-1D counterparts with
similar structure and properties have been studied intensively
�see Ref. 6 for a review�. Note that the spin-ladder model is
the simplest system, where the four-spin cyclic exchange ap-
pears from the electron interaction. In fact, the investigations
of some copper-based spin-ladder materials have revealed
the relevance of four-spin exchange term7 �see Ref. 8 for a
review�. The ground-state phase diagrams of frustrated spin-
1/2 ladder systems are well investigated.9 The inclusion of
four-spin interactions may result in new unconventional
phases.10–13 The different phases are related by a duality
transformation.12

In this Brief Report, we will generalize the well-known
Lieb-Mattis theorem on ordering of energy levels to the lad-
der model with four-spin cyclic interaction. For finite-size
Heisenberg models on bipartite lattices, Lieb and Mattis
proved that the lowest energy E�S� in the sector, where the
total spin is equal to S, is a monotone increasing function of
the spin for any S�Sgs,

14 where Sgs is the spin of the ground
state. This property is known as Lieb-Mattis theorem about
antiferromagnetic ordering of energy levels. The bipartite-
ness means that the lattice can be divided into two sublattices
A and B, so that all interactions within the same sublattice
are ferromagnetic while the interactions between different
sublattices are antiferromagnetic. Moreover, the quantum
ground state of finite-size system is a unique multiplet with
total spin Sgs= �SA−SB�, which coincides with the spin of the
classical ground state, namely, the Néel state. Here, SA and
SB are the highest possible spins on corresponding
sublattices.14 In one dimension, the Lieb-Mattis theorem is
valid for a more general class of quantum systems. In par-
ticular, it is true for the Hubbard chain.15 Recently, it has

been generalized to SU�n� symmetric chain.16 A ferromag-
netic ordering of energy levels has also been formulated and
proven for the Heisenberg chain.17

According to numerical simulations, a weak frustration
may preserve the antiferromagnetic ordering of energy
levels18 and the ground-state spin value,19 whereas a stronger
frustration can violate the Lieb-Mattis property. For many
frustrated systems, the lowest levels E�S� show approxi-
mately parabolic or linear growth.20 So, although the Lieb-
Mattis theorem is not valid for frustrated spin systems in
general, it �or its proper extensions� may be valid for certain
systems. In particular, its generalization to reflection-
symmetric frustrated spin-1/2 ladder model has been formu-
lated and proven recently.21 Here, we obtain similar results
for the frustration caused by four-spin ring interaction.

The Hamiltonian of the system reads:

H = �
l=1

N−1

Jl
��S1,l · S1,l+1 + S2,l · S2,l+1� + �

l=1

N

Jl
�S1,l · S2,l

+ �
l=1

N−1

Kl�Pl,l+1
� + Pl,l+1

�−1� , �1�

where S1,l and S2,l are the spin-1/2 operators of the first and
second chains, respectively. The cyclic ring exchange P�

+ P�−1 is a superposition of clockwise and counterclockwise
permutations of four spins around each plaquette. We con-
sider the following range of couplings:

Jl
�
� 2Kl � 0. �2�

The system possesses SU�2� spin symmetry. It also has Z2
symmetry corresponding to the reflection with respect to the
longitudinal axis. So, the Hamiltonian remains invariant on
individual sectors with fixed values of spin S and reflection
�= �1 quantum numbers.

We will prove that for Hamiltonian �1� with couplings
obeying �2�, the antiferromagnetic ordering of energy levels
holds independently in symmetric ��=1� and antisymmetric
��=−1� sectors and conforms to the similar rule for Haldane
chain,22 i.e., spin-1 Heisenberg chain, with N and N−1 spins,
respectively. Namely, the lowest-energy levels E��S� in sec-
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tors with spin S and parity � are nondegenerate and mono-
tone increasing functions of S for S�Sgs���. Here,

Sgs��� = �0, if � = �− 1�N

1, if � = �− 1�N−1�
is the ground-state spin value in the sector with parity �. The
nondegeneracy means that all states on corresponding level
form a unique multiplet. So, the ground state in �= �−1�N

sector is a unique singlet while in �= �−1�N−1 sector it is a
unique triplet.

We will prove also that at the self-dual point Jl
� =2Kl, the

Lieb-Mattis rule holds in the sectors with fixed number of
rung singlets N0 and agrees with the similar rule for the
Haldane chain with N−N0 spins.

We begin by introducing the basis of three triplet and one
singlet states for each rung:

�1� = 	↑↑ 
 ,

�0̃� =
1
�2

�	↑↓ 
 + 	↓↑ 

 ,

�− 1� = 	↓↓ 
 ,

�0� =
1
�2

�	↑↓ 
 − 	↓↑ 

 . �3�

Below, we will prove that all nonvanishing off-diagonal ele-
ments of the Hamiltonian �1� and �2� become negative in the
basis

�m1, . . . ,mN� = �− 1��N0/2�+N00̃+Modd�m1� � . . . � �mN� , �4�

where ml= �1, 0̃ ,0 marks one of the four rung states �basis
�3��. In the sing factor, N0 is the number of singlets, and N00̃

is the number of pairs �0, 0̃� in the sequence m1 , . . . ,mN,

where 0 is on the left-hand side from 0̃.21 Modd=�lm2l−1 is
the total z projection of odd-site spins. Note that the basic
states above are eigenstates of the reflection operator with
eigenvalue �= �−1�N0.

First, we rewrite the Hamiltonian in a form that is more
convenient for further purposes. The four-spin interaction
term can be expressed via spin operators as follows �see, for
instance, Ref. 23�:

Pl,l+1
� + Pl,l+1

�−1 = S1,l · S1,l+1 + S2,l · S2,l+1 + S1,l · S2,l

+ S1,l+1 · S2,l+1 + S1,l · S2,l+1 + S1,l+1 · S2,l

+ 4�S1,l · S1,l+1��S2,l · S2,l+1� + 4�S1,l · S2,l�

��S1,l+1 · S2,l+1� − 4�S1,l · S2,l+1��S2,l · S1,l+1�

+ 1/4.

Using the relation S1 ·S2= P12 /2−1 /4, where the operator
P12 permutes two spin states, one can present the expression
above in the following form:

Pl,l+1
� + Pl,l+1

�−1 = 2�S1,l · S2,l+1 + S1,l+1 · S2,l�

+ Pl,l+1
� + Pl,l+1

= − Pl,l+1
� . �5�

Here, Pl,l+1
� , Pl,l+1

= and Pl,l+1
� are, respectively, four-spin per-

mutations along the plaquette rungs, legs and diagonals.
Next, we express the two-spin interactions in terms of the
symmetrized and antisymmetrized rung spin operators

Sl
�s� = S1,l + S2,l, Sl

�a� = S1,l − S2,l. �6�

The operator Sl
�s� describes the total spin of lth rung. Using

expressions �5� and �6� and omitting nonessential scalar
term, one can reduce the Hamiltonian �1� to the following
form:

H = �
l=1

N−1

�Jl
sSl

�s� · Sl+1
�s� + Jl

aSl
�a� · Sl+1

�a� �

+ �
l=1

N−1

Kl�Pl,l+1
� + Pl,l+1

= − Pl,l+1
� � + �

l=1

N
Jl

�

2
�Sl

�s��2. �7�

In the above equation, we have introduced the symmetrized
and antisymmetrized couplings

Jl
s =

Jl
�

2
+ Kl, Jl

a =
Jl

�

2
− Kl. �8�

Note that a similar decomposition for the Hamiltonian with-
out four-spin exchange was applied in Refs. 13 and 24. The
permutations Pl,l+1

� and Pl,l+1
� have been used in Ref. 23.

The J� part of the Hamiltonian is just the sum of rung
spins squares, which is diagonal in the basis �4�. The local
terms Pl,l+1

� are also diagonal �with eigenvalues �1�, since
any triplet �singlet� rung state stays symmetric �antisymmet-
ric� under the reflection.

The Js terms correspond to the so-called composite spin
model.25 They conserve the spins of individual rungs because
Sl

�s� describes the total spin of lth rung.24 The singlets
remain frozen at their points, and, therefore, the factor
�−1��N0/2�+N00̃ in the basis �4� remains invariant. All non-
vanishing off-diagonal matrix elements come from the ex-

changes �0̃� � �0̃�↔ ��1� � ��1� and �0̃� � ��1�↔ ��1� � �0̃�
of two neighboring triplet states, which alter the sign of
�−1�Modd. Note that they coincide with similar matrix ele-
ments of the Haldane chain in �nonpositive� basis formed by
the states �−1�Modd�m1� � . . . � �mN�.14 So, the composite spin
part of the Hamiltonian is nonpositive in the basis �4�.

The matrix elements produced by the antisymmetric local
terms of Hamiltonian �7� have been considered already in
Ref. 21. In terms of lowering-raising operators S�a��

=S�a�x� iS�a�y, each such term reads �Sl
�a�+Sl+1

�a�−

+Sl
�a�−Sl+1

�a�+� /2+Sl
�a�zSl+1

�a�z. In contrary to the symmetric case,
the antisymmetrized spin operators mix triplet and singlet
states. Their nonzero matrix elements are:26

�0�S�a�+�− 1� = �2, �1�S�a�+�0� = − �2,
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�0̃�S�a�z�0� = 1. �9�

Using the above equations and the definition of basic states
�4�, it is easy to check that

�. . . ,0l,0l+1, . . .�Sl
�a��Sl+1

�a���. . . , � 1l, � 1l+1, . . .�

= − 2�− 1��N0/2�+N00̃+Modd−�N0�/2�−N
00̃
� −Modd� = − 2, �10�

where the unchanged sites are replaced by dots. The quantum
numbers of -ket and bra- states are mentioned, respectively,
with and without primes. Indeed, according to the definition
of N00̃, the difference N00̃−N

00̃
� in expression �10� is an even

number. Also, N0�=N0+2 and Modd=Modd� �1 depending on
whether l is even or odd. Therefore, the exponent in expres-
sion �10� is an even number, and the equation is true. The
next nontrivial matrix element is also negative. Namely,

�. . . ,0l, � 1l+1, . . .�Sl
�a��Sl+1

�a���. . . , � 1l,0l+1, . . .�

= 2�− 1�Modd−Modd� = 2�− 1��1 = − 2 �11�

because the quantum numbers N00̃ and N0 are the same for
both states.

In contrast, the z projections of antisymmetrized spin op-
erators preserve the quantum number Modd. They produce the
following negative matrix elements:

�. . . ,0l,0l+1, . . .�Sl
�a�zSl+1

�a�z�. . . , 0̃l, 0̃l+1, . . .�

= �− 1�N00̃−N
00̃
� +�N0−N0��/2 = �− 1�even−1 = − 1 �12�

and

�. . . , 0̃l,0l+1, . . .�Sl
�a�zSl+1

�a�z�. . . ,0l, 0̃l+1, . . .�

= �− 1�N00̃−N
00̃
� = �− 1�1 = − 1. �13�

The expressions �10�–�13� together with conjugate ones con-
stitute the full set of nontrivial matrix elements of Hamil-
tonian �7� generated by Ja terms.

Finally, consider the off-diagonal terms, which are re-
sponsible for four-spin cyclic exchange. The operator Pl,l+1

=

just permutes two adjacent rung states. At the same time,
Pl,l+1

� is a signed permutation: While permuting the singlet
with a triplet state it produces an additional minus sign.
Therefore, the difference Pl,l+1

= − Pl,l+1
� vanishes if the spins of

both rungs are the same. If their spins differ, this operator
just permutes them multiplying by 2. Then, using the defini-
tion �4� of basic states, we obtain

�. . . ,tl,0l+1, . . .�Pl,l+1
= − Pl,l+1

� �. . . ,0l,tl+1, . . .�

= 2�− 1�Modd−Modd� +N00̃−N
00̃
� = − 2, �14�

where t=0̃ , �1 is any triplet state. Indeed, in the sign factor

above, Modd=Modd� and N00̃−N
00̃
� =1 for t=0̃. For t= �1,

N00̃=N
00̃
� and �Modd−Modd� �=1. Together with the conjugate

element, this is a sole nonvanishing off-diagonal matrix ele-
ment produced by the four-spin cyclic exchange term.

According to the constraints �2� imposed on the cou-
plings, the coefficients Jl

s ,Jl
a ,Kl in Hamiltonian �7� are posi-

tive. This finishes the proof that the ladder Hamiltonian has
no positive off-diagonal element in the basis �4�.

Due to the spin and reflection symmetries, the Hamil-
tonian is invariant on each �M ,�� subspace, all states of
which have Sz=M and �= �1 quantum numbers. Any two
basic states within the same subspace are connected at least
by two-spin interaction terms of the Hamiltonian, as can be
easily verified by induction.21 So, we can apply the Perron-
Frobenius theorem27 to the matrix of the Hamiltonian re-
stricted to any �M ,�� subspace. As a result, the lowest en-
ergy state there �usually called a relative ground state� is
unique and is a positive superposition of all basic states:

���M,� = �
�m1,. . .,mN���M,��

�m1. . .mN
�m1, . . . ,mN� , �15�

where �m1. . .mN
�0. The uniqueness implies that this state

must have a certain value of spin SM,�, which can be ob-
tained by comparing with the similar state of the Haldane
chain. The last model corresponds to the restriction of the
composite spin model �lSl

�s� ·Sl+1
�s� on the states with triplets

on all rungs. In fact, all such type states from basis �4� form
a nonpositive basis for the Haldane chain.14 Its relative
ground state ���M in Sz=M subspace is a positive superpo-
sition of all basic states and has the highest possible spin
value, i.e., �M�, except M =0 and odd N case when its spin is
one.14 Therefore, for �=1, both states ���M,� and ���M over-
lap, and, hence, must have the same spin. Similarly, the re-
striction of composite spin model to the subspace of states
with one singlet frozen at the last rung corresponds to the
Haldane chain with N−1 sites. So, for �=−1, the spin of
state �15� coincides with the spin of the corresponding state
of the Haldane chain having one site less. Therefore, the spin
of the relative ground state �state �15�� is �M� except M =0
and �= �−1�N−1 case when it equals one.

Now we are ready to finish the proof of our main result.
For �= �−1�N, the relative ground states ����S,� are, corre-
spondingly, the highest and lowest states of a unique spin-S
multiplet, which has the minimum energy E��S� among all
spin-S states with parity �. The �S ,�� subspace contains a
representative from any multiplet with S��S and parity �.
Together with the uniqueness condition, this implies that
E��S�� must be higher than E��S� for all S��S. Conse-
quently, E��S� is a monotone increasing function of S, and
the ground state in �= �−1�N sector is a nondegenerate spin
singlet. For �= �−1�N−1, the states ����S,� are the highest and
lowest states only if S�1. Therefore, E��S� monotonically
increases in this region. Note that the states ����1,� and
���0,�, which have the lowest energy in �= �−1�N−1 sector,
form a spin triplet.

Consider separately the limiting case of Jl
� =2Kl when the

Ja terms in Hamiltonian �7� are absent. Then �l�Sl
�s��2 com-

mutes with the Hamiltonian and with the total spin
operator.12 As a result, the symmetry group SU�2��Z2 ex-
pands to SU�2��U�1�=U�2�. The U�1� symmetry reflects
the invariance under the duality transformation and results in
the conservation of singlet number N0.11 Any �M ,�� sub-
space splits into invariant subspaces with fixed singlet num-
ber obeying �−1�N0 =�. It is easy to see that the Hamiltonian
is connected on every such subspace. Therefore, the relative
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ground state there is unique and is a positive superposition of
all basic states �4� with Sz=M and N0 rung singlets. Again,
comparing it with the action of the composite spin model on
the states with singlets on the last N0 rungs, one can conclude
that the relative ground state has the highest possible spin
value, except M =0 and odd N−N0 case when it is a triplet
state. The antiferromagnetic ordering of energy levels takes
place independently in any sector with fixed singlet number
and corresponds to the similar rule for the Haldane chain
with N−N0 spins.

For appropriate values of couplings, the results of this

Brief Report remain true, if diagonal interactions S1,l ·S2,l+1

+S1,l+1 ·S2,l are included in the Hamiltonian �1�. Similarly,
one can consider a more general biquadratic interaction of
type Kl��S1,l ·S1,l+1��S2,l ·S2,l+1�+4Kl�S1,l ·S2,l��S1,l+1 ·S2,l+1�
−4Kl�S1,l ·S2,l+1��S2,l ·S1,l+1� with arbitrary couplings Kl� be-
cause the first term in the sum is diagonal in the basis �4�.
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